Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Int J Health Geogr ; 23(1): 9, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614973

RESUMO

BACKGROUND: Taxi drivers in a Chinese megacity are frequently exposed to traffic-related particulate matter (PM2.5) due to their job nature, busy road traffic, and urban density. A robust method to quantify dynamic population exposure to PM2.5 among taxi drivers is important for occupational risk prevention, however, it is limited by data availability. METHODS: This study proposed a rapid assessment of dynamic exposure to PM2.5 among drivers based on satellite-derived information, air quality data from monitoring stations, and GPS-based taxi trajectory data. An empirical study was conducted in Wuhan, China, to examine spatial and temporal variability of dynamic exposure and compare whether drivers' exposure exceeded the World Health Organization (WHO) and China air quality guideline thresholds. Kernel density estimation was conducted to further explore the relationship between dynamic exposure and taxi drivers' activities. RESULTS: The taxi drivers' weekday and weekend 24-h PM2.5 exposure was 83.60 µg/m3 and 55.62 µg/m3 respectively, 3.4 and 2.2 times than the WHO's recommended level of 25 µg/m3. Specifically, drivers with high PM2.5 exposure had a higher average trip distance and smaller activity areas. Although major transportation interchanges/terminals were the common activity hotspots for both taxi drivers with high and low exposure, activity hotspots of drivers with high exposure were mainly located in busy riverside commercial areas within historic and central districts bounded by the "Inner Ring Road", while hotspots of drivers with low exposure were new commercial areas in the extended urbanized area bounded by the "Third Ring Road". CONCLUSION: These findings emphasized the need for air quality management and community planning to mitigate the potential health risks of taxi drivers.


Assuntos
Povo Asiático , Material Particulado , Humanos , China/epidemiologia , Pesquisa Empírica , Material Particulado/efeitos adversos , Análise Espacial
2.
Theriogenology ; 219: 138-146, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430798

RESUMO

The quality of sperm significantly influences the reproductive efficiency of pig herds. High-quality sperm is necessary for efficient fertilization and to maximize the litter numbers in commercial pig farming. However, the understanding of genes regulating porcine sperm motility and viability is limited. In this study, we validated porcine sperm/Sertoli-specific promoters through the luciferase reporter system and identified vital genes for sperm quality via loss-of-function means. Further, the shRNAs driven by the ACE and SP-10 promoters were used to knockdown the SPAG6 and PPP1CC genes which were provisionally important for sperm quality. We assessed the effects of SPAG6 and PPP1CC knockdown on sperm motility by using the sperm quality analyzer and flow cytometry. The results showed that the ACE promoter is active in both porcine Sertoli cells and sperms, whereas the SP-10 promoter is operating exclusively in sperm cells. Targeted interference with SPAG6 and PPP1CC expression in sperm cells decreases the motility and increases apoptosis rates in porcine sperms. These findings not only offer new genetic tools for targeting male germ cells but also highlight the crucial roles of SPAG6 and PPP1CC in porcine sperm function.


Assuntos
Infertilidade Masculina , Doenças dos Suínos , Masculino , Animais , Suínos/genética , Motilidade dos Espermatozoides/genética , Sêmen , Espermatozoides , Infertilidade Masculina/genética , Infertilidade Masculina/veterinária , Regiões Promotoras Genéticas , Doenças dos Suínos/genética
3.
Neoplasia ; 51: 100985, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479191

RESUMO

Alterations in cellular metabolism are important hallmarks of glioblastoma(GBM). Metabolic reprogramming is a critical feature as it meets the higher nutritional demand of tumor cells, including proliferation, growth, and survival. Many genes, proteins, and metabolites associated with GBM metabolism reprogramming have been found to be aberrantly expressed, which may provide potential targets for cancer treatment. Therefore, it is becoming increasingly important to explore the role of internal and external factors in metabolic regulation in order to identify more precise therapeutic targets and diagnostic markers for GBM. In this review, we define the metabolic characteristics of GBM, investigate metabolic specificities such as targetable vulnerabilities and therapeutic resistance, as well as present current efforts to target GBM metabolism to improve the standard of care.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral
4.
J Mol Model ; 30(2): 56, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294566

RESUMO

CONTEXT: Two-dimensional materials are a new and promising research field in materials science. This is mainly attributed to their unique photoelectric and chemical properties. In addition to possessing unique optoelectronic and chemical properties, two-dimensional materials also have important application prospects in the field of field-effect devices. Based on density functional theory, the effects of uniaxial strain and equibiaxial strain on the mechanical properties, electronic structure, and optical properties of monolayer h-BN were studied using first principles. The results indicate that compressive strain has a significant impact on the stability of monolayer h-BN. The band gap width of monolayer h-BN decreases with increasing strain, and the optical properties of monolayer h-BN exhibit a relative trend under tensile and compressive strains. The influence of biaxial strain on the mechanical properties, electronic structure, and optical properties of monolayer h-BN is greater than that of uniaxial strain. METHODS: All the calculations were done by the VASP software based on density functional theory. The interaction between atomic nuclei and electrons is described by the projected added wave pseudopotential (PAW), using the generalized gradient approximation (GGA) to exchange the Perdew-Burke-Ernzerhof (PBE) of the functional. To avoid interlayer interactions, a 15-Å vacuum layer was set up. The Brillouin zone selects the Monkhorst-Pack method to generate 9 × 9 × 1 of k-point grid, the cut off energy is set to 500 eV, the energy convergence standard of the system is 1 × 10-5 eV, and the interaction force between atoms is 0.01 eV/Å.

5.
Clin Transl Med ; 13(11): e1441, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37997538

RESUMO

BACKGROUND: The study and synthesis of membrane organelles are becoming increasingly important, not only as simplified cellular models for corresponding molecular and metabolic studies but also for applications in synthetic biology of artificial cells and drug delivery vehicles. Lipid droplets (LDs) are central organelles in cellular lipid metabolism and are involved in almost all metabolic processes. Multiple studies have also demonstrated a high correlation between LDs and metabolic diseases. During these processes, LDs reveal a highly dynamic character, with their lipid fraction, protein composition and subcellular localisation constantly changing in response to metabolic demands. However, the molecular mechanisms underlying these functions have not been fully understood due to the limitations of cell biology approaches. Fortunately, developments in synthetic biology have provided a huge breakthrough for metabolism research, and methods for in vitro synthesis of LDs have been successfully established, with great advances in protein binding, lipid function, membrane dynamics and enzymatic reactions. AIMS AND METHODS: In this review, we provide a comprehensive overview of the assembly and function of endogenous LDs, from the generation of lipid molecules to how they are assembled into LDs in the endoplasmic reticulum. In particular, we highlight two major classes of synthetic LD models for fabrication techniques and their recent advances in biology and explore their roles and challenges in achieving real applications of artificial LDs in the future.


Assuntos
Gotículas Lipídicas , Doenças Metabólicas , Humanos , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Retículo Endoplasmático/metabolismo , Lipídeos/análise , Doenças Metabólicas/metabolismo
6.
Int J Ophthalmol ; 16(11): 1734-1745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028530

RESUMO

AIM: To evaluate the relationship between gene polymorphism (BclI, ER22/23EK, N363S) and the occurrence, progression and sensitivity to glucocorticoid of lacrimal gland benign lymphoepithelial lesion (LGBLEL). METHODS: Clinical peripheral blood samples of 52 LGBLEL patients and 10 normal volunteers were collected for DNA extraction and polymerase chain reaction sequencing to analyze single nucleotide polymorphism (SNP) genotypes. The lacrimal tissues of LGBLEL were surgically removed and made into paraffin sections for subsequent hematoxylin-eosin (HE) and Masson staining analysis. The duration of disease and hormone use of LGBLEL patients from diagnosis to surgery were also analyzed. The Meta-analysis follows PRISMA guidelines to conducted a systematic review of human studies investigating the relationship between the NR3C1 BclI polymorphism and glucocorticoids (GCs) sensitivity. RESULTS: There was no association between ER22/23EK or N363S and the occurrence of LGBLEL or GCs sensitivity (P>0.05); BclI GC genotype was closely related to GCs resistance (P=0.03) as is the minor allele C (P=0.0017). The HE staining and Masson staining showed that the GC genotype of BclI remarkably slowed down the disease progression and reduced fibrosis (P<0.05), especially for GCs-dependent patients (P<0.0001). Meta-analysis showed that BclI was not significantly associated with GCs responsiveness. CONCLUSION: The LGBLEL patients who carry the NR3C1 BclI allele C may be more sensitive to GCs and associated with lower fibrosis and slower disease progression. The results may guide the clinical treatment strategy for the LGBLEL patients.

7.
Front Cell Dev Biol ; 11: 1283820, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020926

RESUMO

As a novel antioxidant, a growing body of studies has documented the diverse biological effects of molecular hydrogen (H2) in a wide range of organisms, spanning animals, plants, and microorganisms. Although several possible mechanisms have been proposed, they cannot fully explain the extensive biological effects of H2. Mitochondria, known for ATP production, also play crucial roles in diverse cellular functions, including Ca2+ signaling, regulation of reactive oxygen species (ROS) generation, apoptosis, proliferation, and lipid transport, while their dysfunction is implicated in a broad spectrum of diseases, including cardiovascular disorders, neurodegenerative conditions, metabolic disorders, and cancer. This review aims to 1) summarize the experimental evidence on the impact of H2 on mitochondrial function; 2) provide an overview of the mitochondrial pathways underlying the biological effects of H2, and 3) discuss H2 metabolism in eukaryotic organisms and its relationship with mitochondria. Moreover, based on previous findings, this review proposes that H2 may regulate mitochondrial quality control through diverse pathways in response to varying degrees of mitochondrial damage. By combining the existing research evidence with an evolutionary perspective, this review emphasizes the potential hydrogenase activity in mitochondria of higher plants and animals. Finally, this review also addresses potential issues in the current mechanistic study and offers insights into future research directions, aiming to provide a reference for future studies on the mechanisms underlying the action of H2.

8.
Opt Express ; 31(16): 26764-26776, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710528

RESUMO

Single-molecule localization microscopy (SMLM) provides unmatched high resolution but relies on accurate drift correction due to the long acquisition time for each field of view. A popular drift correction is implemented via referencing to fiducial markers that are assumed to be firmly immobilized and remain stationary relative to the imaged sample. However, there is so far lack of efficient approaches for evaluating other motions except sample drifting of immobilized markers and for addressing their potential impacts on images. Here, we developed a new approach for quantitatively assessing the motions of fiducial markers relative to the sample via mean squared displacement (MSD) analysis. Our findings revealed that over 90% of immobilized fluorescent beads in the SMLM imaging buffer exhibited higher MSDs compared to stationary beads in dry samples and displayed varying degrees of wobbling relative to the imaged field. By excluding extremely high-MSD beads in each field from drift correction, we optimized drift correction and experimentally measured localization precision. In SMLM experiments of cellular microtubules, we also found that including only relatively low-MSD beads for drift correction significantly improved the image resolution and quality. Our study presents a simple and effective approach to assess the potential relative motions of fiducial markers and emphasizes the importance of pre-screening fiducial markers for improved image quality and resolution in SMLM imaging.

9.
Membranes (Basel) ; 13(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37755224

RESUMO

For decades, tissue regeneration has been a challenging issue in scientific modeling and human practices. Although many conventional therapies are already used to treat burns, muscle injuries, bone defects, and hair follicle injuries, there remains an urgent need for better healing effects in skin, bone, and other unique tissues. Recent advances in three-dimensional (3D) printing and real-time monitoring technologies have enabled the creation of tissue-like membranes and the provision of an appropriate microenvironment. Using tissue engineering methods incorporating 3D printing technologies and biomaterials for the extracellular matrix (ECM) containing scaffolds can be used to construct a precisely distributed artificial membrane. Moreover, advances in smart sensors have facilitated the development of tissue regeneration. Various smart sensors may monitor the recovery of the wound process in different aspects, and some may spontaneously give feedback to the wound sites by releasing biological factors. The combination of the detection of smart sensors and individualized membrane design in the healing process shows enormous potential for wound dressings. Here, we provide an overview of the advantages of 3D printing and conventional therapies in tissue engineering. We also shed light on different types of 3D printing technology, biomaterials, and sensors to describe effective methods for use in skin and other tissue regeneration, highlighting their strengths and limitations. Finally, we highlight the value of 3D bioengineered membranes in various fields, including the modeling of disease, organ-on-a-chip, and drug development.

10.
Front Med (Lausanne) ; 10: 1168977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457559

RESUMO

Purpose: Lacrimal gland benign lymphoepithelial lesion (LGBLEL) is an IgG4-related disease of unknown etiology with a risk for malignant transformation. Estrogen is considered to be related to LGBLEL onset. Methods: Seventy-eight LGBLEL and 13 control clinical samples were collected and studied to determine the relationship between estrogen and its receptors and LGBLEL development. Results: The serological analysis revealed no significant differences in the levels of three estrogens be-tween the LGBLEL and control groups. However, immunohistochemical analyses indicated that the expression levels of ERß and its downstream receptor RERG were relatively lower in LGBLEL samples than in control samples, with higher expression in the lacrimal gland and lower expression in the lymphocyte infiltration region. However, low expression of ERα was detected. The transcriptome sequence analysis revealed upregulated genes associated with LGBLEL enriched in lymphocyte proliferation and activation function; downregulated genes were enriched in epithelial and vascular proliferation functions. The key genes and gene networks were further analyzed. Interactions between B cells and epithelial cells were analyzed due to the identified involvement of leukocyte subsets and epithelial cells. B cell proliferation was found to potentially contribute to lacrimal gland apoptosis. Conclusion: Therefore, the tissue-heterogeneous expression pattern of ERß is potentially related to the clinical manifestations and progression of LGBLEL, although further investigations are required to confirm this finding.

11.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375833

RESUMO

The heterogeneous and highly plastic cell populations of macrophages are important mediators of cellular responses during all stages of wound healing, especially in the inflammatory stage. Molecular hydrogen (H2), which has potent antioxidant and anti-inflammatory effects, has been shown to promote M2 polarization in injury and disease. However, more in vivo time series studies of the role of M1-to-M2 polarization in wound healing are needed. In the current study, we performed time series experiments on a dorsal full-thickness skin defect mouse model in the inflammatory stage to examine the effects of H2 inhalation. Our results revealed that H2 could promote very early M1-to-M2 polarization (on days 2-3 post wounding, 2-3 days earlier than in conventional wound healing), without disturbing the functions of the M1 phenotype. Time series analysis of the transcriptome, blood cell counts, and multiple cytokines further indicated that peripheral blood monocytes were a source of H2-induced M2 macrophages and that the functions of H2 in macrophage polarization were not only dependent on its antioxidant effects. Therefore, we believe that H2 could reduce inflammation in wound care by shifting early macrophage polarization in clinical settings.

12.
Geospat Health ; 18(1)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37246535

RESUMO

As found in the health studies literature, the levels of climate association between epidemiological diseases have been found to vary across regions. Therefore, it seems reasonable to allow for the possibility that relationships might vary spatially within regions. We implemented the geographically weighted random forest (GWRF) machine learning method to analyze ecological disease patterns caused by spatially non-stationary processes using a malaria incidence dataset for Rwanda. We first compared the geographically weighted regression (WGR), the global random forest (GRF), and the geographically weighted random forest (GWRF) to examine the spatial non-stationarity in the non-linear relationships between malaria incidence and their risk factors. We used the Gaussian areal kriging model to disaggregate the malaria incidence at the local administrative cell level to understand the relationships at a fine scale since the model goodness of fit was not satisfactory to explain malaria incidence due to the limited number of sample values. Our results show that in terms of the coefficients of determination and prediction accuracy, the geographical random forest model performs better than the GWR and the global random forest model. The coefficients of determination of the geographically weighted regression (R2), the global RF (R2), and the GWRF (R2) were 4.74, 0.76, and 0.79, respectively. The GWRF algorithm achieves the best result and reveals that risk factors (rainfall, land surface temperature, elevation, and air temperature) have a strong non-linear relationship with the spatial distribution of malaria incidence rates, which could have implications for supporting local initiatives for malaria elimination in Rwanda.


Assuntos
Malária , Algoritmo Florestas Aleatórias , Humanos , Incidência , Ruanda/epidemiologia , Malária/epidemiologia , Fatores de Risco
13.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37111299

RESUMO

Oxidative stress and chronic inflammation have been implicated in the pathophysiology of metabolic diseases, including diabetes mellitus (DM), metabolic syndrome (MS), fatty liver (FL), atherosclerosis (AS), and obesity. Molecular hydrogen (H2) has long been considered a physiologically inert gas. In the last two decades, accumulating evidence from pre-clinical and clinical studies has indicated that H2 may act as an antioxidant to exert therapeutic and preventive effects on various disorders, including metabolic diseases. However, the mechanisms underlying the action of H2 remain unclear. The purpose of this review was to (1) provide an overview of the current research on the potential effects of H2 on metabolic diseases; (2) discuss the possible mechanisms underlying these effects, including the canonical anti-oxidative, anti-inflammatory, and anti-apoptotic effects, as well as suppression of ER stress, activation of autophagy, improvement of mitochondrial function, regulation of gut microbiota, and other possible mechanisms. The potential target molecules of H2 will also be discussed. With more high-quality clinical trials and in-depth mechanism research, it is believed that H2 will eventually be applied to clinical practice in the future, to benefit more patients with metabolic disease.

14.
Inflamm Regen ; 43(1): 22, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36973725

RESUMO

BACKGROUND: Despite progress in developing wound care strategies, there is currently no treatment that promotes the self-tissue repair capabilities. H2 has been shown to effectively protect cells and tissues from oxidative and inflammatory damage. While comprehensive effects and how H2 functions in wound healing remains unknown, especially for the link between H2 and extracellular matrix (ECM) deposition and epidermal stem cells (EpSCs) activation. METHODS: Here, we established a cutaneous aseptic wound model and applied a high concentration of H2 (66% H2) in a treatment chamber. Molecular mechanisms and the effects of healing were evaluated by gene functional enrichment analysis, digital spatial profiler analysis, blood perfusion/oxygen detection assay, in vitro tube formation assay, enzyme-linked immunosorbent assay, immunofluorescent staining, non-targeted metabonomic analysis, flow cytometry, transmission electron microscope, and live-cell imaging. RESULTS: We revealed that a high concentration of H2 (66% H2) greatly increased the healing rate (3 times higher than the control group) on day 11 post-wounding. The effect was not dependent on O2 or anti-reactive oxygen species functions. Histological and cellular experiments proved the fast re-epithelialization in the H2 group. ECM components early (3 days post-wounding) deposition were found in the H2 group of the proximal wound, especially for the dermal col-I, epidermal col-III, and dermis-epidermis-junction col-XVII. H2 accelerated early autologous EpSCs proliferation (1-2 days in advance) and then differentiation into myoepithelial cells. These epidermal myoepithelial cells could further contribute to ECM deposition. Other beneficial outcomes include sustained moist healing, greater vascularization, less T-helper-1 and T-helper-17 cell-related systemic inflammation, and better tissue remodelling. CONCLUSION: We have discovered a novel pattern of wound healing induced by molecular hydrogen treatment. This is the first time to reveal the direct link between H2 and ECM deposition and EpSCs activation. These H2-induced multiple advantages in healing may be related to the enhancement of cell viability in various cells and the maintenance of mitochondrial functions at a basic level in the biological processes of life.

15.
Chem Biodivers ; 20(4): e202201203, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36896496

RESUMO

A novel monoterpene alkaloid, named incarvine G, was isolated from the Incarvillea sinensis Lam. Its chemical structure was elucidated using comprehensive spectroscopic methods. Incarvine G is an ester compound comprised of a monoterpene alkaloid and glucose. This compound showed evident inhibition on cell migration, invasion, and cytoskeleton formation of human MDA-MB-231 with low cytotoxicity.


Assuntos
Antineoplásicos , Bignoniaceae , Monoterpenos , Humanos , Alcaloides/farmacologia , Alcaloides/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Bignoniaceae/química , Estrutura Molecular , Monoterpenos/farmacologia , Monoterpenos/química , Inibição de Migração Celular/efeitos dos fármacos
16.
J Plast Surg Hand Surg ; 57(1-6): 122-128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34964674

RESUMO

Proliferation is an important characteristic of life, and many signaling pathways participate in this complicated process. The MAPK/Erk pathway is a classic pathway in cell proliferation. In this study, expression levels of key factors in the MAPK/Erk pathway were measured to assess the proliferation level among normal skin, physiological scar, and keloid tissue. Thirty patients were selected randomly from the Department of Plastic Surgery at Peking Union Medical College Hospital from January 2019 to December 2020. Histological appearance and fiber tissue content were observed by Hematoxylin and eosin staining and Masson staining. Expression levels of key factors in the MAPK/Erk pathway (ATF2, c-Jun, c-Myc, p38 and STAT1) and relative proteins (HIF-1α and PCNA) in tissues were detected by immunohistochemistry and analyzed as the percentage of positively stained cells in both the tissue epidermis and dermis. Western blot was used for quantitative analysis of the above factors. In results, keloid tissue showed a significantly higher fiber and less cell content. In the immunohistochemical result, higher expression of key factors was observed in the epidermis than in the dermal layer, and the expression of all factors was increased remarkably in keloid tissue. In western blot analysis, all factors (except STAT1) showed higher expression in keloid tissue. In our former research, keloid showed similar apoptosis level as physiological scar and normal skin. On combining our former conclusion and results in this study, an imbalance condition between the high proliferation level and normal apoptosis level may lead to the growth characteristics of keloid.


Assuntos
Queloide , Humanos , Queloide/patologia , Proliferação de Células , Apoptose , Fibroblastos/patologia
17.
J Plast Surg Hand Surg ; 57(1-6): 324-329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35522455

RESUMO

Photodynamic therapy (PDT) is a new therapy for treating cancer with less toxicity, high selectivity, good cooperativity, and repetitive usability. However, keloid treatment by PDT is mainly focused on clinical appearance, and few studies have been conducted on the mechanisms of PDT. In this study, key factors of the classical mitochondrial apoptosis signaling pathway were measured to assess the effect of a new PDT photosensitizer (p1). A specific inhibitor of caspase-8 (Z-IETD-FMK) was also used to verify the possible mechanisms. Twelve samples were obtained from 12 patients (six with keloids and six without) selected randomly from the Department of Plastic Surgery at Peking Union Medical College Hospital from January to December 2020. After cell culture, fibroblasts were divided into 13 groups. The morphology of fibroblasts in each group was observed by microscopy. Cell activity was measured by cell counting kit-8, and cell apoptotic morphology was observed by TUNEL staining. The reactive oxygen species (ROS) relative value was measured by a ROS test kit. The expression levels of key mitochondrial factors (caspase-3, caspase-8, cytochrome-c, Bax, and Bcl-2) were assessed by western blot, and mRNA expression of caspase-3 and caspase-8 was measured by RT-qPCR. We showed that p1 had a satisfactory proapoptotic effect on keloid fibroblasts by increasing the expression of ROS, caspase-3, caspase-8, and cytochrome-c, and decreasing the Bcl-2/Bax ratio; however, this effect was partially inhibited by Z-IETD-FMK, indicating that caspase-8 may be one of the p1's targets to achieve the proapoptotic effect.


Assuntos
Queloide , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/uso terapêutico , Caspase 3/metabolismo , Caspase 3/farmacologia , Caspase 3/uso terapêutico , Queloide/tratamento farmacológico , Queloide/patologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Espécies Reativas de Oxigênio/uso terapêutico , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Caspase 8/metabolismo , Caspase 8/farmacologia , Caspase 8/uso terapêutico , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/uso terapêutico , Fibroblastos/patologia , Citocromos/metabolismo , Citocromos/farmacologia , Citocromos/uso terapêutico
18.
J Colloid Interface Sci ; 634: 737-746, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563430

RESUMO

Developing advanced electrode materials with appropriate compositions and exquisite configurations is crucial in fabricating lithium-ion batteries (LIBs) with high energy density and fast charging capability plateau. Herein, a Fe3O4@reduced graphene oxide (Fe3O4@rGO) coupled architecture was rationally designed and in-situ synthesized. Monodispersed mesoporous Fe3O4 nanospheres were homogeneously formed and strongly bound on interconnected macroporous rGO frameworks to form well-defined three-dimensional (3D) hierarchical porous morphologies. This tailored Fe3O4@rGO coupled architecture fully exploited the advantages of Fe3O4 and rGO to overcome their inherent challenges, including spontaneous aggregating/excessive restacking tendency, sluggish ions diffusion/electrons transportation, and severe volume expansion/structural collapse. Benefitting from their synergistic effects, the optimized Fe3O4@rGO composite electrode exhibited an improved electrochemical reactivity, electrical conductivity, electrolyte accessibility, and structural stability. The optimized composite electrode displayed a high specific capacity of 1296.8 mA h g-1 at 0.1 A g-1 after 100 cycles, even retaining 555.1 mA h g-1 at 2 A g-1 after 2000 cycles. The electrochemical kinetics analysis revealed the predominantly pseudocapacitive behaviors of the Fe3O4@rGO heterogeneous interfaces, accounting for the excellent electrode performance. This study proposes a viable strategy for use in engineering hybrid composites with coupled architectures to optimize their potential as high-performance electrode materials for use in LIBs.

19.
Polymers (Basel) ; 16(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38201687

RESUMO

Failures of wound healing have been a focus of research worldwide. With the continuous development of materials science, electrospun nanofiber scaffolds loaded with metal-based nanoparticles provide new ideas and methods for research into new tissue engineering materials due to their excellent antibacterial, anti-inflammatory, and wound healing abilities. In this review, the stages of extracellular matrix and wound healing, electrospun nanofiber scaffolds, metal-based nanoparticles, and metal-based nanoparticles supported by electrospun nanofiber scaffolds are reviewed, and their characteristics and applications are introduced. We discuss in detail the current research on wound healing of metal-based nanoparticles and electrospun nanofiber scaffolds loaded with metal-based nanoparticles, and we highlight the potential mechanisms and promising applications of these scaffolds for promoting wound healing.

20.
World J Clin Cases ; 10(21): 7545-7552, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-36158021

RESUMO

BACKGROUND: Patients with keloids who receive radiotherapy (RT) after surgery can develop refractory wounds that cannot be healed by the patient's own repair system. Such chronic wounds are uneven and complex due to persistent abscess and ulceration. Without external intervention, they can easily result in local tissue necrosis or, in severe cases, large area tissue resection, amputation, and even death. CASE SUMMARY: This article describes the use of hydrogen to treat a 42-year-old female patient with a chronic wound on her left shoulder. The patient had a skin graft that involved implanting a dilator under the skin of her left shoulder, and then transferring excess skin from her shoulder onto scar tissue on her chest. The skin grafting was followed by two rounds of RT, after which the shoulder wound had difficulty healing. For six months, the patient was treated with 2 h of hydrogen inhalation (HI) therapy per day, in addition to application of sterile gauze on the wound and periodic debridement. We also performed one deep, large, sharp debridement to enlarge the wound area. The wound healed completely within 6 mo of beginning the HI treatment. CONCLUSION: After HI therapy, the patient showed superior progress in reepithelialization and wound repair, with eventual wound closure in 6 mo, in comparison with the previous failures of hyperbaric oxygen and recombinant bovine basic fibroblast growth factor therapies. Our work showed that HI therapy could be a new strategy for wound healing that is cleaner, more convenient, and less expensive than other therapies, as well as easily accessible for further application in clinical wound care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...